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A New Method for Calculating TE and TM
Cutoff Frequencies of Uniform Waveguides

with Lunar or Eccentric Annular
Cross Section

JAMES R. KUTTLER

Abstract — Cutoff frequenciesare determined for the uniform waveguide

with circular outer conductor and eccentric circular inner conductor. The

“lunar line” formed by connecting the inner circle to the outer circle is also

considered. Both TE and TM modes are treated. The technique used is to

combine conformal mapping of the cross section with the powerful method

of intermediate problems. This combination of methods has not been

applied Previously to the calculation of cutoff frequencies. It produces

good, rigorous lower bounds for the frequencies. When complementary

upper bounds are found by the Ritz method, very small inter-vak are

determined containing the exact frequencies. For the examples considered,

the first twenty or so frequencies are bounded very accurately.

I. INTRODUCTION

T HE CUTOFF FREQUENCIES of a uniform hollow

conducting waveguide are found by solving the

Hehnholtz equation on the cross section of the waveguide.

Many important waveguides have complicated cross sec-

tions which cannot be solved by separation of variables. A

variety of approximation methods have been used to try to

determine the frequencies of such waveguides. It has been

observed that a conformal mapping of the cross section can

transform the problem to an equivalent anisotropic prob-

lem on a geometrically simpler region. It has not been

previously observed, however, that this equivalent problem

is in a form which is well-suited to the application of the

method of intermediate problems.

The method of intermediate problems is a powerful

technique which is capable of finding very accurate lower

bounds for frequencies. Intermediate methods relate the

given problem variationally by an infinite set of constraints

to a problem with known solution. When only a finite

number of the constraints are used, a solvable problem

results which gives the bounds. This method deserves to be

more widely known, and it is part of the objective of this
paper to popularize this useful procedure. When combined

with the more familiar Rayleigh–Ritz method which ob-

tains upper bounds on the frequencies, remarkable accu-

racy can be achieved with rigorous error bounds, not only
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Fig. 1. Eccentric annulus

Fig. 2. “Lunar” guide.

for the lowest frequencies but for higher frequencies as

well.
This paper exhibits the calculations for a waveguide with

circular outer conductor and eccentric circular inner con-

ductor (Fig. 1). When the inner conductor is connected to

the outer conductor, the resulting “lunar line” (Fig. 2) is

also treated. Frequencies corresponding to both TM and

TE modes are given.

The properties of waveguides with these configurations

have been a subject of considerable interest. Previous papers

on lunar lines include [1], [2], [3] for TE frequencies, [4] for

TM frequencies, and [5], [6] for both TM and TE frequen-
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ties. For eccentric annular guides, [7], [8], [9] treated both

TM and TE frequencies, while [10]–[14] consider TM

frequencies only. Methods employed in these papers in-

clude point-matching, finite differences, and truncation of

series, sometimes in connection with a conformal mapping.

Generally, these papers consider only the lowest few fre-

quencies, and none of them are able to give any estimate of

the error in their approximations.

The method presented in this paper, a conformal trans-

formation combined with intermediate methods for lower

bounds and Raylei@–Ritz for upper bounds, essentially

solves this important problem once and for all. Tables of

numerical results are included which show agreement be-

tween the lower and upper bounds to within one or two

digits in the third significant figure, even for higher fre-

quencies. Relative dimensions of regions for which fre-

quencies are tabulated were selected to coincide with exam-

ples in the literature for purposes of direct comparison.

The rigorous bounds on the exact frequencies presented

here permits the relative merits of other approximations to

be accurately assessed.

The success of the method of intermediate problems for

the example of eccentric annular and lunar waveguides

hopefully will encourage the employment of this useful tool

for other waveguide problems,

II. CONFORMAL MAPPING APPLIED TO THE

HELMHOLTZ EQUATION

The cutoff frequencies k of a uniform waveguide are

determined by solving the Helmholtz equation

i?za+ aza+ kza =0

6%2 av2
(1)

on a region representing the cross section of the waveguide.

(We remark that, by analogy, this equation also governs

the circular frequencies of vibration of a membrane of the

same shape.) For TM modes, the Dirichlet boundary con-

dition

@=o (2)

is employed, while for TE modes, the Neumann boundary

condition

d@_.

z– (3)

is used. (For a membrane, these correspond, respectively,

to fixed or free boundaries.)

The analytic function

w = Sillh xl coth z/2 (4)

maps the rectangle R given by xl < x < X2, — n < Y < T in

the z-plane onto the slit eccentric annulus between the

outer circle having radius 1 and center at cosh xl and the

inner circle of radius

r = sinh xl/sinh X2 (5)

with center at sinh xl cosh x2/sinh X2 (see Fig, 3). If d is

the distance between the centers of the circles, the parame-

Fig. 3. The map w = sinh xl coth(z\2) transfomns a rectangle in the

z-plane to the slit eccentric ammlus in the w-plane.

ters xl, X2, r, and d are related by the equations

l–r2+d2
cosh Xl =

2r

~–rz–dz

cosh X2 =
2rd “

(6)

(7)

If

@(x, y)=@(u, o) (8)

where z = x + iy and w = u + iv are related by (4), then the

Helmholtz equation (1) on the slit annulus is equivalent to

the weighted Helmholtz equation

82+ az+— +kzozq=()
13X2+ ayz

on the rectangle R, where

(9)

u= ~ = (coshx-cosy)-’sinhxl. (lo)

Equation (9) can be thought of as representing a rectan-

gular waveguide composed of an inhomogeneous medium.

Dirichlet conditions @ = O on a portion of the boundary

of the annulus become Dirichlet conditions @= O on

the corresponding part of the boundary of the rectangle,

while Neumann conditions 00/ an = O are equivalent to

Neumann conditions 13@/dn = O. The function @ is sym-

metric or antisymmetric in u if @is symmetric or antisym-

metric, respectively, in y.

Consideration of functions @ symmetric or antisymrnet-

ric in y is not only a convenience, but allows the problem

of the complete annulus, as well as the slit annulus (lunar

shape), to be considered. The reason is as follows: symmet-

ric functions @satisfying (9) and Dirichlet conditions @= O

on all sides correspond to symmetric solutions @ of (8),

satisfying @ = O on the boundary of the lunar region

(including sides of the slit), while antisymmetric functions

o satisfying (9) and Dirichlet conditions on all sides corre-

spond to antisymmetric solutions of (8) for both the lunar

region and the eccentric annulus, because antisymmetric

functions @ necessarily vanish on the u-axis. Finally, sym-

metric solutions of (9) satisfying Dirichlet conditions on

x = xl and x = X2 and Neumann conditions &$/ih = O on

y = + T correspond to the symmetric solutions@ of (8) for

the annulus, because symmetric functions @ will satisfy

&l/ 6’n = O on the u-axis. Thus, by considering the various

combinations of symmetries and boundary conditions on

O, all comb~ations of symmetries, lunar or annular re-
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TABLE I

SYMMETRY AND BOUNDARY CONDITION ON+ WITH
CORRESPONDING SYMMRTRY, MODE TYPE, AND REGION FOR ~.

B.unda., Cmd, tl,n o“ +
Type of ,0,, Type peo:f
Stlmtv of *mx=x,a”d .=x, .. . Y = :“

1..,,,=0 ,Ymet,>c

,=0 mt,,ymwtr,. TM 1“”,, 0. .“. ”1,.

SYT”mtrlc an..lar

W=o .“t,,mt,, c
m

1“.,,

?$=O
W-t.!. H 1“... . . annul..

,=0 anti.mmet,>c annular

gions, and TM or TE boundary conditions on

obtained. These are summarized in Table I.

III. METHOD OF OBTAINING BOUNDS

By a conformal map, the Helmholtz equation (8) on a

complicated region is replaced by the equivalent equation

(9) on a simple region at the cost of introducing the weight

function u 2. This latter problem, however, is in a form

well-suited for the method of intermediate problems [15].

The idea of the intermediate method is to relate the

given problem to a problem with known solution (the base

problem) through an infinite system of constraints. When

only a finite number of the constraints are applied, bounds

for the desired solution result. By the procedure known t

truncation, the intermediate problem can be solved by

matrix calculation. The method of intermediate problems

a powerful technique which deserves to be more widely

known. Its application to (9) is illustrated.

Write (9) in the form

Au=k202u (11)

where A is the negative Laplace operator acting on func-

tions in L2(R), i.e., square integrable functions on the

rectangle. Now

max u = sinh xl
R

so rewrite (11) as

Au=k2[sinh2xl(I -T2)]u

where T is multiplication by

koshx ‘COSy)2-l

cosh x – COS y “

If the positive operator T2 is dropped, the result is the base

problem

Au= k2(sinh2xl)u (12)

which is the just the Hehnholtz equation on the rectangle,

with the well-known solution found by separation of vari-

ables. The frequencies of (12) are lower bounds for the

desired frequencies of (11). To improve these bounds,

consider an intermediate problem

Au=k2sinh2xl(l -TPnT)u (13)

- where P. is the operator of orthogonal projection (in L2 ( R))

on the span of any convenient set of trial functions

{PI, P2, ” “ “2P. }. Then (13) also gives lower bounds for
(11), which improve as n is increased.

To reduce the solution of (13) to a matrix calculation,

introduce the truncation of the operator A. If the frequen-

ciesof Aarekl<k2 <..., in order, with associated modes

U1, U2,. ... the truncation Atm) of order m agrees with A on

ul, u2, . . ..um and is multiplication by k;+ ~ on their or-

thogonal complement. Thus

A@O=AQ~+k:+l(I-QJ

where Q~ is the orthogonal projection on the span of

{u,,... , u~ }. Because A(m) is a smaller operator than A,

the problem

Afm)u =k2sinh2xl(I– TP.T)u (14)

also has frequencies k, which are lower bounds for the

desired frequencies of (11) and increase as both m and n

are increased.

Now (14) can be solved as a matrix problem. If

u= ~ aiu, + ~ blTpl
1=1 1=1

is put into (14), it follows that m + n frequencies of (14) are

found from the partitioned relative matrix equation

[ 1[1K2 (K2 – k~+lI)E’ a

o k:+lB b

‘k2sti2x1[~EB~J[:l“5)
where K 2 is the diagonal matrix diag (k:, k;, ” “”, k:) of

the first m frequencies of A, and the matrices B, C, and E

are given by

/
B,l = Rpipjdx dy C,J = ~ Tp,TpJ dx dy

R

Eij = J UiTP~ dx dy.
R

The dimensions of B, C, and E are n x n, n x n, and

m x n, respectively. Equation (14) also has km+ ~ as a

frequency of infinite multiplicity. In the present problem, it

was convenient to choose the trial functions

-/P,– (coshx–cosy)2–l (coshx–cosy)uJ.

Then all integrals required in B, C, and E are elementary.

Complementary upper bounds for the frequencies are

obtained from the Raylei@–Ritz method. Equation (9) is

in a very convenient form to apply Rayleigh-Ritz. The

Rayleigh quotient for (9) is

Ju2u2dxdy
R

(16)
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If a linear combination of trial functions

n

u= ~ a,t$i
,=1

is used in the Rayleigh quotient (16), the n stationary

values of the Rayleigh quotient, with respect to the coeffi-

cients ai, give upper bounds for the squares of the first n

frequencies k:, k:,. . ., k; of (9). For TM modes

@i= (coshx – COSy) u,

was used where U1, U2, ”” ., Un are the modes associated with

the first n frequencies of the base problem (12). The

Rayleigh-Ritz equation then becomes the matrix problem

Ma= k2(sinh2x1)a

where

and these integrals are elementary. Because the first TE

mode is a constant function, this was not a good choice of

trial functions for TE modes. Instead

was used, making the Rayleigh-Ritz equation

K2a = k2Na

where K* is again the diagonal matrix { kf,” . “, k: } and

JNil = u2u, ujdxdy.
R

These integrals are no longer elementary, so they integra-

tion was done exactly and the x integration approximated

by 96-point Gaussian quadrature.

The methods of this paper have been used previously for

a circular waveguide with circular ridges [16].

IV. NUMERICAL RESULTS AND COMPARISON WITH

OTHER WORK

The results are always given for an outer circle of unit

radius, the radius of the inner circle being denoted r and

the distance between the centers of the circles denoted d.

To convert these frequencies to those of a similar region

with outer circle of radius a, divide these frequencies by a.

When comparing the results of other authors, their fre-

quencies were normalized to an outer circle of radius 1. In

the tables, the frequencies corresponding to symmetric (,s)

or antisymmetric (a) modes are identified. Lower bounds

are truncated and upper bounds have the last digit rounded

up. Note that these are rigorous bounds, and many higher

frequencies are obtained.

The information contained in the tables is also sum-

marized graphically in Figs. 4 and 5 for the first two

nonzero frequencies. Since the frequencies depend on both

r and d, ideally these should be graphed as surfaces in

three dimensions. Figs. 4 and 5 are a representation of the

projection of data points from these surfaces onto the k-r

plane. The range between the upper and lower bounds is
represented by rectangles.
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Fig. 4. First two nonzero TE frequencies given in terms of (r, d ).
Bounds are” given by solid rectangles for eccentric annular and open
rectangles for lunar guides. Asterisks are exact double frequencies.
Results from the literature are also shown as arrows connected to boxe8
with the number of the reference.
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Fig. 5. First two TM frequencies given in terms of (r, d ). Bounds are
given by solid rectangles for eccentric imnular and open rectangles for
lunar guides. Asterisks are exact frequencies. Results from the literature
are rdso shown as arrows connected to boxes with the number of the
reference.



352 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984

TABLE II
LOWER AND UPPER BOUNDSFORFIRST20 NONZEROTE

FREQUENCIESk, FORLUNARGUIDEWITH r = 0.66, d = 0.22317
CALCULATEDBYTrUnCatiOn WITHm = n =60 AND64-ORDER

RITZ. REFERENCE [1] GIVESk2 = 0.96. (a= ANTISYMMETRIC,

s = SYMMETRIC ASSOCIATED MODE.)
=

J

—

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

10

19

20

21

Lowe, B,””d

0.8521

1.3545

1.8916

2,4619

3.M58

3.6314

4.2138

4.7901

5.359

5.916

6.035

6.465

6.843

6.984

7.502

7.62

7,97

8.35

8.45

8.63

upper Bound

0.8538

1.3570

1.8952

2.4666

3,0519

3.6392

4.2238

4.8034

5.378

5,946

6,059

6.510

6.883

7.070

7.627

7.69

8.19

8.49

8.75

9.25

TABLE III
LOWER AND UPPERBOUNDSFORFIRST 15 NONZEROTE

FREQUENCIES kj FORLUNARGUIDEWITHr = 0.572, d = 0.318 BY
(70, 70)-TRUNCATION AND 1OO-RITZ.NUMBERSIN BRACXETS

REFER TOInferences.

=
J

2

3

4

3

6

7

8

9

10

11

12

13

14

15

16

—

1-----”--0 9,67 0 9621

1 498? 1 SW,

2 W48 2 0571

2 61, 2 632

3 195 3 219

3 77) 3 799

4 324 4 375

a 7,5 4 803

4 w 4 944

3 362 5 5@8

5 633 5 793

5 912 6 064

6 15 664

6 48
, 6,72

6 71 7 19

—

TABLE IV
BOUNDSFORFIRST SEVENTM FP.EOUENCIESk, OFLUNAR GUIDE

WITH r = 0.572, d = 0.318 BY (75,75)-TRUNCATION AND 150-RITz
WITH ApprOXimatiOnS.

m
Tables II and III give TE frequencies of lunar guides.

The guide of Table II has the same relative dimensions as

that of [1], where only the lowest frequency was approxi-

mated as k2 = 0.96, seen to be high by 12 percent. The

guide of Table III was studied in [2] by conformal mapping

and series truncation, and in [3] and [5] by finite dif-

ferences. These results also are shown and most are seen to

be slightly high, but this maybe accounted for by the fact

that these authors considered the line connecting the inner

and outer circles to have a positive width. The TM frequen-

cies of this guide are given in Table IV, along with results

from [4] and [6] using finite differences.

TABLE V
TM FREQUENCIESk, FOR ECCENTRIC ANNULAR GUIDES WITH

r = 0.5, d = 0,0.1,0.2,0.3. EXACT FROM[17], BOUNDSBY
(70,70)-TRUNCATION AND140-~TZ. APPROXIMATIONSFROM[13]

FORd = 0.2.

,.0 d = 0,1 d.G2 d . 0,3

c.,,, ;% ~: s-m ~~ “~~J [13] mm,,, ;= :P ,mt,,

1 6 Z461 5 ~,,,, 5 47043 s 4 80953 4,81191 , ,,, s , ,Cd, ,.3,,8 ,

2 6.3932 5.99121 5.9,257 a $.5,,, ,.,1,5 s ,,1 a 5 ,,,, $ )?,7 a

3 6 3,32 6,4740, 6.,7547 , 6,1,03 6 ,,,, , ,,, , ,.,,,, ,,8944 ,

4 6.8138 6.,1,53 6.9210? a 6.796, 68002 a 6,5994 ,.62,) ,

5 6813, 7.30527 7.X683 s 7,,,,, ,.,%7 7 ,,, ,

6

7.240 7.325 ,
7.457, 7 7,,30 7 7,,,, , 7.%5, 7,$5,9 . 7.,76 7,,,7 a

7 7 4577 7.868?3 7.86982 s 8,489, ,.4991

&

8,M1 8.316 s

8,2667 8,4820 8 4852 , 8.99% 9,01E 8.382 8.666 ,

9 8,,66, 8.!95, 8 4972 , 9.2,,4 ,.,,88 8.829 9210 a

10 9.19,, 9,3562 93572 , ,,,528 9,47,3 8,9W 9.276 ,
11 9,1,00 9.3544 9,3575 , 9.92,, 9.,5,, . 8.90 9.2+ s

12 )0 18S9 10,3, W 1,,3?99 a 10,,,0 ,0.,07 a

13 ,0,188, 10.3)50 10 319, s 1,.207 10,25,

14 ,1,2,57 ,0,,,, ,0,,,, , ,0,668 ,0.843

15 ,,,,,$, ,1,26, ,1, md * 10,,,s 10,852

,, ,* 3,,, 11.,2, 11.,,, s ,0,827 ,0,,,,

17 ,?.3,, > ,,,,3, 1,.34, a 1,.3,0 ,,,55, a

,8 ,?.5469 ), 7,, ,, 84 s ,,.5?4 ,1,,77

1, ,Z 6247 1, ,C3 12.,,, a ,1,%, ,1 m a

2, ,?.,2,, 12 36, 12 3,3 , 11,,8 ,2.26

21 ,>.8555 12 ,79 ,, ,,, a 1,.,, 12 7,

2, ,? ,,55 12 7,9 ,2 86, , ,2.27 ,,.7, ,

23 ,3,2,1, ,3 m ,3 ,,5 , ,2.,, ,2 ,3

24 ,3 231, 13 3,3 ,3468 ,

25 )3 4,30 13 436 13 466 8

?6 ,3 ,030 ,368, ,38,3 ,

,7 ,, 7423 1,,,,, ,4,2,, a

,, ,3 7423 la 38, ,4 5,3 s

TABLE VI
TM FREQUENCIESFORECCENTRICANNULAR GUIDES. Emc~
FROM[17], BOUNDSBY (70,70)-TRUNCATION AND 140-RITz.

14689?0

11

12

13

14

r = 2/3, d = 0.2

Lwm u,,,,
Mm ~D”nd Smnetr,

6 2379 6.2420 s

6.9654 6,970z a

7,67?8 7.6787 s

8.3631 8 3700 a

9 0323 9.M56 s

9.6922 97071 a

10,318 10.356 s

10,947 10, W2 a

11 539 11.616 ,

12.018 12,17b ,

12,128 12.229 ,

12 62 12, U ,

12.70 12,93 ,

13.15 13,43 a

. . 0.2s

T
d=!l d=0.25

,..,, ;% ::% ~mt,y
4.0977 3,4687 3 4752 s

, 447, 4.2593 4.266, a

4.4475 4 Nlo ,,9249 ,

53199 5.5239 5.5425 a

5,3199 5 893 5,g30 ,

64265 6.582 6.641 a

6.4265 6,591 6 7?3 s

7,5W4 6.622 6.767 s

7,5984 7,443 7 7Z3 a

8.323S 7.365 7 739 ,

8.5369 7.488 7 735 a

8.5369

I

=

d=, ,

‘“W’” ‘Q’ep Smt.,W,”d B.””d

2.887 2 996 s

3.858 4,,*3 a

4 088 4.827 ,

4.58 5 575 a

5.877 ,

6,323 ,

6.992 ,

7 208 a

7.735 s

8 166 ,

8.355 a

I

Tables V and VI give TM frequencies of eccentric an-

nular guides. In Table V, the inner radius is held fixed at

r = 0.5, and the offset of the centers d is varied over the

values O, 0.1, 0.2, and 0.3. A concentric armulus (d = O) can

be solved exactly. Its TM frequencies k are roots of the

equations

J.(k) %(kr)– Jn(kr)q(k)=O (17)

where Jn, Yn are Bessel functions of the first and second

kind, andn= 0,1,2,... . A convenient seven-place table of

roots for n = 0(1)10 and r = 0(0.05)0.95 is [17]. Notice that

roots associated with n = O are single roots, but roots for

n >1 are double since one associated mode has an angular

component of cos n 6, while the other has sin n f3. From

Table V, observe that these double frequencies bifurcate or

split into distinct frequencies as the inner circle becomes

eccentric. The fundamental frequency decreases rather

rapidly with increasing eccentricity. Other frequencies de-

crease less rapidly, while some actually increase for small

eccentricities and then decrease. If graphs were drawn of
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the frequencies versus eccentricity, some of the curves

would appear to cross as indicated by exchanges in relative

positions of symmetric and antisymmetric frequencies. Ap-

proximations from [13] using truncated series of Bessel

functions are also given in Table V, which are in good

agreement with the bounds.

Table VI gives bounds for r = 2/3, d = 0.2, and r = 0.25,

d = 0.5” and 0.25, as well as the exact frequencies for the

concentric annulus with r = 0.25. Notice that the region

with ~r = 0.25, d = 0.25 contains the region with r = 0.5,

d = 0.2, which in turn contains the region with r = 2/3,

d = 0.2. It is well known that the TM frequencies are

monotone with respect’ to domain inclusion, and this phe-

nomenon can be observed here.

Graphs are shown of TM frequencies as a function of

eccentricity in [8], [9], and [13]. Point matching is used in

[8] to give the first five frequencies for r = 0.25 and r = 0.5;

in [9], a perturbation method gives the first frequency for

r = 0.25; and in [13], the first five to seven frequencies are

given for r = 0.1, Q.3, and 0.5. These graphs are interesting

qualitatively as, showing the variation of the frequencies

with the offset, but quantitatively are difficult to read with

accuracy beyond about 5 percent. Within 5 percent, these

graphical results agree with the bounds of the tables, but

note that the relative error between the tabulated upper

and lower bounds for the lower frequencies is generally

<<1 percent.

The graphical results of our Fig. 4 should be compared

with [8, figs. 5–8], and those of our Fig. 5 should be

compared with [8, figs. 9 and 10], [9, fig. 4], and [13, fig. 2].

The results obtained in [14] by truncation of Bessel

function series do not compare well with the bounds. The

approximations reported there are sometimes too low,

sometimes too high, and some of the higher frequencies

reported are very high (e.g., [14] gives for r = 2/3, d = 0.2,

k7 = 11.8719, whereas k7 < 10.3553; for r = 0.5, d = 0.2,

k9 = 12.3224, whereas k9 < 9.3488; for r = 0.5, d = 0.3, k~

= 9.9978, whereas k,< 8.316; for r = 0.25, d = 0.5, k~ =

7.4380, whereas k~ < 5.877). Furthermore, [14] incorrectly

reports th~ values of kl and kz given in [13] for r = 0.5,

d = 0.2.

Tables VII, VIII, and IX report bounds for TE frequen-

cies of various eccentric annuli, as well as exact values for

the circle and some concentric annuli. Concentric annuli

have frequencies k which are roots of the ‘equations

‘ J;(k) ~(kr)– J;(kr)Y~(k)=O (18)

where the prime denotes derivative, and n = 0,1,2, “ 00.

These a:e also tabulated in [17] for n = 0(1)10 and r =

0(0.05)0.95. It is very important to observe that the first

nonzero root for n = O is not the lowest frequency. The

lowest nonzero frequency is the double first root for n = 1

and the single first root for n = O gives a higher frequency.

Again, all roots for n >1 are double and bifurcate as the

inner circle becomes eccentric.

Tables VII and VIII also given the approximations of

[8], where a graph is also given of the lowest four TE
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TABLE VII
FIRST 20 NONZEROTE FREQUENCIESk, FORECCENTRICANNULAR

GUIDE.EXACTFROM[17], BOUNDSFROM(60,60)-TRUNCATION
AND 64-RITz, APPROXMATIONSFROM[81.. .

,.
r = 1/2,. =,,,,,.,, ,=,,, ,,. O?

,=0

Lower “w r
Bound 8.”,,: [81 S“”twt,y u :% $met ,, [,,.,

2 1 1!001 I 1.176 , ,,: a 1,35114 1,,521, a , ,354,

3 1.32027 1.3.221 1 32> , 1.40694 1.40793 s 1,3547

4 2,4267 24305 2.6815 ‘2,6840 , 2 6*,2

5 2,4408 2.444. 2 6837 2.6862 , 2 68, *

6 3,6142 3, C2Q: 3,9247 3.9298 , 3.9578

7 3,6157 3,62)? 3,9247 3.9298 s 3,9578

8 4,7804 4,7?95 4,9937 5,0192 s 5,,,52

9 4 7804 4 7901 5,1036 5,1138 , 5 1752

10 5 92)8 59385 5.1o31 5,1139 s 5,,389

13 5.9231 5 9385 5.7m 5,83, a 6,,,89

12 6,3321 6 34W 6 234 6 261 s 6.3932

13 7.027 7 068 6 240 6.26? a 6 ,Mq

14 7 035 7 067 6 542 6.599 s 6 S649

15 7,111 7,139 7,236 7 311 , 7,0626

16 7,867 7,911 7.302 7,385 , 7,06?6

17 8,075 8 186 7 334 7 392 a 7 46?2

18 8.093 8,1”2 7.881 7,9’34 s 7,4622

19 9,060 9 296 8 300 8,500 5 7 8,0,

20 9.089 9 29? 8 333 8.493 , 7,&401

21 9,251 9 412 8,483 8.626 a 8,5586

TABLE VIII
TE FREQUENCIESk, FORECCENTRICANNULARGUIDES.EXACT
FROM[17], BOUNDSFROM(60,60)-TRUNCATIONAND 64-RITz.

APPROXIMATIONSFROM[8].

6

7

8

9

)0

11

12

13

14

FROM

r - 0,475. d . 9,315 I r = 0.15875, d . 0.379

1.3715

1,5132

2 1125

2 7270

3 8978

3 9069

4.342

4.g77

5 cdl

5 325

5 919

6,108

6 148

1 3741

1,5155

2.71W

2.7345

3.924e

3 9247

4 4“1

5084

5083

5427

6 206

6,223

6 387

I 3739 *

I 51$s ,

.3

a

1.7330 1,7584 1 758! a

1.7603 1,7948 I 7946 s

2.873 2989

2.871 3,004

3 432 3,775

3.78 4,17

3.76 4,21

TABLE IX

r-o

1.8412

1.8412

3.054?

3.0542

3.8317

42012

4,2012

TE FREQUENCIESk, FOR ECCENTRIC ANNULAR GUIDES. EXACT

BOUNDS BY (60.60)-TRUNCATION AND 64-RITz..7]
=

,

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

—

. .

. , ,,3, d = 2,9

‘“we’ ‘0”” SwnewBound Bound

1.5393 1,5436 a

1.5766 1,5807 s

2,8966 2,9067 a

2,8968 2 9C67 ,

4,0944 4,)161 ,

40955 4.1161 8

4,?146 4,2356 s

5,131 5.167 a

5.219 5.270 ,

5,237 5,279 a

5,098 5,954 s

6,243 6,396 ,

6.288 6 19? a

6.578 6 664 a

6.938 7.071 ,

n $P ~mtry
1,6446 I .6490 a

1,67s8 1.681) s

2,944$ 2.%84 ,

2,9547 2.%82 a

3,939 3.988 ,

& 12, 4,160 ,

4 105 4.168 s

4,978 5 060 a

5 111 5.303 s

5 )75 5 102 .

5,602 5 180 s

5 89 6.43 s

6,08 6.43 a

6,31 6.57 a

6,27 6.76 s

r=0,25,
6=0

Exact

1,6445

1,64+5

3,0093

3.0093

4.1936

4 1936

,,,475

5 0045

5 0045

5 3164

5 3164

C 3572

6 3572

6 8154

6 4150

frequencies for r = 0.5 as a function of eccentricity (again

agreeing, to the limited accuracy of the graph, with the

bounds). The numerical results of [8] are consistently near

the upper bounds, and perhaps could be shown to always

furnish upper bounds td the exact frequencies.

The bounds in Table IX for r = 1/3, d = 2/9 were

intended for comparison with results in [11], where ec-

centric annuli of these relative dimensions were considered

using conformal mapping with point matching. Unfor-
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tunately, absolute dimensions are riot clearly indicated in

[11], ~d no reasonable normalization of the frequencies

reported there makes them correspond to those of the

table. Apparently, it was assumed in [11] that the mode

without angular dependence furnishes the lowest nonzero

frequency, which, as observed above, is not so. The paper

[9] may have made this same error ([11] is cited there as a

reference). The graph given in [9] for the lowest TE mode

for r = 0.25 versus eccentricity does not make sense, even

for the concentric ammlus.

Note that the annulus with (r, d) = (2/3, 0.2) is con-

tained in both (0.5,0.2) and (0.475,0.315), which are both

contained in (1/3,2/9), which is contained in both

(0.25,0.25) and (0.15875, 0.379), which are contained in the

full circle (r= O). It is interesting to examine the behavior

of the frequencies with respect to inclusion. The lower

frequencies generally decrease as the inner circle increases,

but some of the higher frequencies (e.g., kg, /cll) actually

increase at times. Notice that the double frequencies of the

full circle stay close to one another, in general. The single

freqpency corresponding to the n = O Bessel function tends

to migrate up the spectrum with increasing inner-circle

size. It is easy to identify because it is associated with a

symmetric mode. For r = O, it is k6; for r = 1/3, d = 2/9, it

is k8; when r = 2/3, d = 0.2, it has become klz.
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