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A New Method for Calculating TE and TM
Cutoff Frequencies of Uniform Waveguides
with Lunar or Eccentric Annular
Cross Section

JAMES R. KUTTLER

Abstract — Cutoff frequencies are determined for the uniform waveguide
with circular outer conductor and eccentric circular inner conductor. The
“lunar line” formed by connecting the inner circle to the outer circle is also
considered. Both TE and TM modes are treated. The technique used is to
combine conformal mapping of the cross section with the powerful method
of intermediate problems. This combination of methods has not been
applied previously to the calculation of cutoff frequencies. It produces
good, rigorous lower bounds for the frequencies. When complementary
upper bounds are found by the Ritz method, very small intervals are
determined containing the exact frequencies. For the examples considered,
the first twenty or so frequencies are bounded very accurately.

I. INTRODUCTION

HE CUTOFF FREQUENCIES of a uniform hollow

conducting waveguide are found by solving the
Helmholtz equation on the cross section of the waveguide.
Many important waveguides have complicated cross sec-
tions which cannot be solved by separation of variables. A
variety of approximation methods have been used to try to
determine the frequencies of such waveguides. It has been
observed that a conformal mapping of the cross section can
transform the problem to an equivalent anisotropic prob-
lem on a geometrically simpler region. It has not been
previously observed, however, that this equivalent problem
is in a form which is well-suited to the application of the
method of intermediate problems.

The method of intermediate problems is a powerful
technique which is capable of finding very accurate lower
bounds for frequencies. Intermediate methods relate the
given problem variationally by an infinite set of constraints
to a problem with known solution. When only a finite
number of the constraints are used, a solvable problem
results which gives the bounds. This method deserves to be
more widely known, and it is part of the objective of this
paper to popularize this useful procedure. When combined
with the more familiar Rayleigh—Ritz method which ob-
tains upper bounds on the frequencies, remarkable accu-
racy can be achieved with rigorous error bounds, not only
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Fig. 1. Eccentric annulus.

Fig. 2. **Lunar” gude.

for the lowest frequencies but for higher frequencies as
well.

This paper exhibits the calculations for a waveguide with
circular outer conductor and eccentric circular inner con-
ductor (Fig. 1). When the inner conductor is connected to
the outer conductor, the resulting “lunar line” (Fig. 2) is
also treated. Frequencies corresponding to both TM and
TE modes are given.

The properties of waveguides with these configurations
have been a subject of considerable interest. Previous papers
on lunar lines include {1}, [2], {3] for TE frequencies, [4] for
TM frequencies, and [5], [6] for both TM and TE frequen-
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cies. For eccentric annular guides, [7], [8], [9] treated both
TM and TE frequencies, while [10]-[14] consider TM
frequencies only. Methods employed in these papers in-
clude point-matching, finite differences, and truncation of
series, sometimes in connection with a conformal mapping.
Generally, these papers consider only the lowest few fre-
quencies, and none of them are able to give any estimate of
the error in their approximations.

The method presented in this paper, a conformal trans-
formation combined with intermediate methods for lower
bounds and Rayleigh-Ritz for upper bounds, essentially
solves this important problem once and for all. Tables of
numerical results are included which show agreement be-
tween the lower and upper bounds to within one or two
digits in the third significant figure, even for higher fre-
quencies. Relative dimensions of regions for which fre-
quencies are tabulated were selected to coincide with exam-
ples in the literature for purposes: of direct comparison.
The rigorous bounds on the exact frequencies presented
here permits the relative merits of other approximations to
be accurately assessed.

The success of the method of intermediate problems for
the example of eccentric annular and lunar waveguides
hopefully will encourage the employment of this useful tool
for other waveguide problems.

II. CONFORMAL MAPPING APPLIED TO THE
HerMHOLTZ EQUATION

The cutoff frequencies k of a uniform waveguide are
determined by solving the Helmholtz equation

1)

on a region representing the cross section of the waveguide.
(We remark that, by analogy, this equation also governs
the circular frequencies of vibration of a membrane of the
same shape.) For TM modes, the Dirichlet boundary con-
dition ,

®=0 )

is employed, while for TE modes, the Neumann boundary
condition

I L]
Pl (3)

is used. (For a membrane, these correspond, respectively,
to fixed or free boundaries.)
The analytic function

w = sinh x, coth z /2 (4)
maps the rectangle R given by x; < x < x,, —7<y<min
the z-plane onto the slit eccentric annulus between the
outer circle having radius / and center at coshx; and the

inner circle of radius
r =sinh x, /sinh x, (5)

with center at sinh x, cosh x, /sinh x, (see Fig. 3). If d is
the distance between the centers of the circles, the parame-
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Fig. 3. The map w = sinh x, coth(z/2) transforms a rectangle in the
z-plane to the slit eccentric annulus in the w-plane.

ters x,, x,, r, and d are related by the equations

_ p2 2

cosh x; = % (6)
w2 __ g2

coshx, = —1—;—”13’— (7)

If

¢(x,y)=2(u,v) (8)
where z = x + iy and w = u + iv are related by (4), then the
Helmholtz equation (1) on the slit annulus is equivalent to
the weighted Helmholtz equation

2 2
ig+ﬁi+k"‘az¢=0
ax?  dy?

on the rectangle R, where

©)

(10)

Equation (9) can be thought of as representing a rectan-
gular waveguide composed of an inhomogeneous medium.
Dirichlet conditions ® =0 on a portion of the boundary
of the annulus become Dirichlet conditions ¢ =0 on
the corresponding part of the boundary of the rectangle,
while Neumann conditions d®/dn =0 are equivalent to
Neumann conditions d¢/dn = 0. The function ® is sym-
metric or antisymmetric in v if ¢ is symmetric or antisym-
metric, respectively, in y.

Consideration of functions ¢ symmetric or antisymmet-
ric in y is not only a convenience, but allows the problem
of the complete annulus, as well as the slit annulus (lunar
shape), to be considered. The reason is as follows: symmet-
ric functions ¢ satisfying (9) and Dirichlet conditions ¢ = 0
on all sides correspond to symmetric solutions ® of (8),
satisfying ® =0 on the boundary of the lunar region
(including sides of the slit), while antisymmetric functions
¢ satisfying (9) and Dirichlet conditions on all sides corre-
spond to antisymmetric solutions of (8) for both the lunar
region and the eccentric annulus, because antisymmetric
functions ® necessarily vanish on the u-axis. Finally, sym-
metric solutions of (9) satisfying Dirichlet conditions on
x =Xx, and x = x, and Neumann conditions d¢/dn=0 on
y =+ & correspond to the symmetric solutions @ of (8) for
the annulus, because symmetric functions ® will satisfy
d®/adn =0 on the u-axis. Thus, by considering the various
combinations of symmetries and boundary conditions on
¢, all combinations of symmetries, lunar or annular re-

o =l% = (cosh x —cos y) " 'sinh x,.
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TABLE 1
SYMMETRY AND BOUNDARY CONDITION ON ¢ WITH
CORRESPONDING SYMMETRY, MODE TYPE, AND REGION FOR ®.

Boundary Condition on ¢
Type of

Mode Type
Symmetry of &

Type of
Regron

onx=x; andx=x, | ony-=en

symetric Tunar
=0
4=0 antisymmetric ™

Tunar or annular

symmetric annutar

antisymetric Tunar

oo symetric 13 Tunar or annular

$=0 ant1symetric annular

gions, and TM or TE boundary conditions on ® are
obtained. These are summarized in Table 1.

IIL.

By a conformal map, the Helmholtz equation (8) on a
complicated region is replaced by the equivalent equation
(9) on a simple region at the cost of introducing the weight
function ¢?. This latter problem, however, is in a form
well-suited for the method of intermediate problems [15].

The idea of the intermediate method is to relate the
given problem to a problem with known solution (the base
problem) through an infinite system of constraints. When
only a finite number of the constraints are applied, bounds
for the desired solution result. By the procedure known ¢
truncation, the intermediate problem can be solved by
matrix calculation. The method of intermediate problems
a powerful technique which deserves to be more widely
known. Its application to (9) is illustrated.

Write (9) in the form

Au=k’>u (11)

where 4 is the negative Laplace operator acting on func-
tions in L,(R), ie., square integrable functions on the
rectangle. Now

METHOD OF OBTAINING BOUNDS

m}glxo = sinh x;
so rewrite (11) as
Au=k*[sink® x,(I - T?)]u

where T is multiplication by

\/(coshx ~cos y)*—1
coshx —cos y )

If the positive operator T2 is dropped, the result is the base
problem

Au=k?(sint® x; ) u (12)

which is the just the Helmholtz equation on the rectangle,
with the well-known solution found by separation of vari-
ables. The frequencies of (12) are lower bounds for the
desired frequencies of (11). To improve these bounds,
consider an intermediate problem

Au=k?sinh* x, (I - TP,T )u (13)

“ where P, is the operator of orthogonal projection (in L,(R))
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on the span of any convenient set of trial functions
{ P> P2, "»P,}. Then (13) also gives lower bounds for
(11), which improve as » is increased.

To reduce the solution of (13) to a matrix calculation,
introduce the fruncation of the operator 4. If the frequen-

cies of A are k; < k, < - - -, in order, with associated modes
Uy, Uy, - -, the truncation A of order m agrees with 4 on
Uy, Uy, +-,u,, and is multiplication by k2_, on their or-

thogonal complement. Thus
A =AQ,, + ki (1-0,,)

where Q,, is the orthogonal projection on the span of
{ug,- - -,u,, }. Because 4™ is a smaller operator than 4,
the problem

Ay = k2sink? x, (I — TP, T )u (14)

also has frequencies k, which are lower bounds for the
desired frequencies of (11) and increase as both m and »
are increased.

Now (14) can be solved as a matrix problem. If

u= Y au,+ Y, bTp,
1=1 s=1
is put into (14), it follows that m + n frequencies of (14) are
found from the partitioned relative matrix equation
K? (K*-k%,,I)E
0 kn1B

a
b

S AN
= k?sinh? x, (15)
—E B-C||b

where K2 is the diagonal matrix diag(k?, k3,---,k2) of
the first m frequencies of A, and the matrices B, C, and E
are given by

B = | p,pdxd C,,=|TpTpdxd
J _/RPPJ Ly J fRP P, y

E; =/Ru,~ijdxdy.

The dimensions of B, C, and E are nXn, n Xn, and
m X n, respectively. Equation (14) also has k,.; as a
frequency of infinite multiplicity. In the present problem, it
was convenient to choose the trial functions

p= \/(coshx —cos y)°—1 (cosh x —cos y)u,.

Then all integrals required in B, C, and E are elementary.

Complementary upper bounds for the frequencies are
obtained from the Rayleigh—Ritz method. Equation (9) is
in a very convenient form to apply Rayleigh—Ritz. The
Rayleigh quotient for (9) is

f[(—fH—)] "
o u“axay
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If a linear combination of trial functions

n

u= Z al¢i

=1
is used in the Rayleigh quotient (16), the n stationary
values of the Rayleigh quotient, with respect to the coeffi-
cients a;, give upper bounds for the squares of the first n
frequencies k7, k2,- - -,k2 of (9). For TM modes
¢, = (coshx —cos y)u,
was used where u,, u,,- - -,u, are the modes associated with

the first n frequencies of the base problem (12). The
Rayleigh—Ritz equation then becomes the matrix problem

Ma = k*(sink’ x, ) a
99, 9%

9%, 99
M, “./ ax ax dy dy
and these integrals are elementary. Because the first TE

mode is a constant function, this was not a good choice of
trial functions for TE modes. Instead

¢ =u,
was used, making the Rayleigh-Ritz equation
K?a=k?Na
where K ? is again the diagonal matrix {k2,- - -

where

dx dy

,k2} and
Nij=j;{o2u,ujdxdy.

These integrals are no longer elementary, so the y integra-
tion was done exactly and the x integration approximated
by 96-point Gaussian quadratures.

The methods of this paper have been used previously for
a circular waveguide with circular ridges [16].

1V. NuMERICAL RESULTS AND COMPARISON WITH
OTHER WORK

The results are always given for an outer circle of unit
radius, the radius of the inner circle being denoted r and
the distance between the centers of the circles denoted d.
To convert these frequencies to those of a similar region
with outer circle of radius a, divide these frequencies by a.
When comparing the results of other authors, their fre-
quencies were normalized to an outer circle of radius 1. In
the tables, the frequencies corresponding to symmetric (s)
or antisymmetric (a) modes are identified. Lower bounds
are truncated and upper bounds have the last digit rounded
up. Note that these are rigorous bounds, and many higher
frequencies are obtained.

The information contained in the tables is also sum-
marized graphically in Figs. 4 and 5 for the first two
nonzero frequencies. Since the frequencies depend on both
r and d, ideally these should be graphed as surfaces in
three dimensions. Figs. 4 and 5 are a representation of the
projection of data points from these surfaces onto the k-r
plane. The range between the upper and lower bounds is
represented by rectangles.
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Fig. 4. First two nonzero TE frequencies given in terms of (r,d).
Bounds are’ given by solid rectangles for eccentric annular and open
rectangles for lunar guides. Asterisks are exact double frequencies.
Results from the literature are also shown as arrows connected to boxes
with the number of the reference.
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Fig. 5. First two TM frequencies given in terms of (r, d). Bounds are
given by solid rectangles for eccentric annular and open rectangles for
lunar guides. Asterisks are exact frequencies. Results from the literature
are also shown as arrows connected to boxes with the number of the
reference.
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TABLE II
LowER AND UPPER BOUNDS FOR FIRST 20 NONZERO TE
FREQUENCIES k& ', FOR LUNAR GUIDE WITH r = 0.66, d = 0.22317
CALCULATED BY TRUNCATION WITH # = n = 60 AND 64-ORDER
Rrtz. REFERENCE [1] GIVES k, = 0.96. (@ = ANTISYMMETRIC,
§ = SYMMETRIC ASSOCIATED MODE.)

3 | Lower Bound | Upper Bound | Symetry
2 0.8521 0.8538 a
3 1.3545 1.3570 s
s 1.8916 1.8952 a
5 2.4615 2.4666 s
6 3.0858 3.0519 a
7 3.6314 3.6392 s
8 4,2138 4.2038 a
9 4.7901 4.8034 s
10 5.358 5.378 2
n 5,916 5,946 s
12 6,035 6,059 s
13 6.465 6.510 a
13 6.843 . 6,883 a
15 6.984 7.070 s
3 7.502 7.627 a
7 7.62 7.69 s
8 7.97 8.1% s
19 8.3 8.49 a
20 8.45 8.75 2
21 8.63 9.25 i3
TABLE IIT

LowEeR AND UPPER BOUNDS FOR FIRST 15 NONZERO TE
FREQUENCIES &, FOR LUNAR GUIDE WITH = 0.572, d=0.318 BY
(70,70)-TRUNCATION AND 100-R1TZ. NUMBERS IN BRACKETS
REFER TO REFERENCES.

T
’ s | tower sound | upper Bound | toproximations | symetry |
‘ 0 97547 [2 i
2 0 9567 0 9621 0 9745 Eai a
0 98975 (6 :
31 a0 1 5026 i 1 s
4 2 0408 2057 211155 (6] 2
5 2619 2 632 2 72685 (6] s
s 319 3219 a
7 3 379 s
8 4 324 4375 a
9 4785 4 803 s
10 4 882 4 908 s
n 5 362 5 508 a
12 5 633 5793 [
1 5 912 6 064 I
1 615 6 64 a
s X 6.72 s
16 67 719 s
TABLE IV

Bounps FOR FIRST SEVEN TM FREQUENCIES & ; OF LUNAR GUIDE
WITH r = 0.572, d = 0.318 BY (75, 75)-TRUNCATION AND 150-RiTZ
WITH APPROXIMATIONS.

3 Lower Bound Upper Bound 67 Symmetry
1 4,592 45097 4,60495 s
2 5 4217 5.4433 5,487 a
3 6.2097 6.2383 6.2325 s
4 6.9475 7,0064 6,99 a
5 7.663 7.789 s
6 8.118 8,469 a
7 8 401 8.883 s
L

Tables II and III give TE frequencies of lunar guides.
The guide of Table II has the same relative dimensions as
that of [1], where only the lowest frequency was approxi-
mated as k, =0.96, seen to be high by 12 percent. The
guide of Table III was studied in [2] by conformal mapping
and series truncation, and in [3] and [5] by finite dif-
ferences. These results also are shown and most are seen to
be slightly high, but this may be accounted for by the fact
that these authors considered the line connecting the inner
and outer circles to have a positive width. The TM frequen-
cies of this guide are given in Table IV, along with results
from [4} and [6] using finite differences.
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TABLEV
TM FREQUENCIES £, FOR ECCENTRIC ANNULAR GUIDES WITH
r=0.5,d=0,0.1,0.2,0.3. EXACT FROM [17], BOUNDS BY
(70,70)-TRUNCATION AND 140-RITZ. APPROXIMATIONS FROM [13]

FORd = 0.2.
d=0 d=0,1 d=02 d=0,3
S| mect |G Bes ey | Gl WP Da) symety | R smetey
1 6 2461 5 46911 5 47043 s 4 80953  4,81191 4811 s 43042 4.3118 s
2 6.3932 5.99121 5.99257 2 5.5098 5.5125 5 511 a 51179 5 1257 a
3 b 3932 6.47403  6.47547 s 6.1703 6 1735 6172 s 5.8736 5.8944 s
4 6.8138 6.91953  6,92102 a 6.7964 6 8002 a 6.5994 6.6251 3
5 6 8138 7.30527  7.30683 s 7.3%07 7.3957 7391 s 7.240 7,325 5
13 7.4577 7730 7 71298 2 7.9559 7,919 a 7.876 7,997 a
7 7 4577 7.86823  7,86982 s 8,4894 8,499 s 8,081 B.316 s
8 8,2667 8,4830 8 4852 a 8.99% 9.0106 ) 8.382 B.646 s
9 8.2667 8.4950 8 4972 s 9.2694 5.3488 B 8.829 9210 2
10 9.1900 9,3542 9 3572 @ 9,4528 9.4763 s 8,900 9.276 2
1" 9,1900 9.3544 9,3575 s 9.9316 9,9577 2 8.90 9,88 13
2 10 1889 10,3154 10,3199 a 10,000 10,107 a
13 10,1889 10.3150 10 3199 s 10.207 10,253 s
14 11,2357 10,709 10,744 5 10,668 10.843 s
15 11.2357 11,265 11,304 2 10,775 10,852 E)
16 12 33 11,329 1,340 s 10.821 10,923 s
7 12.313 .33 11.340 a 11,330 11,557 a
18 12.5469 11 792 11 845 s 11,528 n.mm s
12 12 6247 12 308 12,365 a 11,568 1 769 a
20 12.6247 12 365 12 393 s 11.78 12.26 s
2 12.8555 12 379 12 293 2 12.00 12 74 s
22 12 8555 12 789 12 865 s 12.27 12,74 a
23 13,2319 13 265 13 335 a 12,34 12 93 a
28 13 2319 13 383 13 458 s
25 13 4030 13 436 13 466 a
2€ 13 4030 13 689 13 803 s
27 13 7423 14,125 14,239 2
28 13 7423 14 384 14 553 s
—
TABLE VI

TM FREQUENCIES FOR ECCENTRIC ANNULAR GUIDES. EXACT
FROM [17], BOUNDS BY (70, 70)-TRUNCATION AND 140-R17Z.

0.8
re2/3,d=02 a=0 d=0.25 d-05
Lower  Upper Lower  Upper Lower Upper
3 Bound  Bound SY™Metry | Exact Bound Bound SY™CY | poyng Bound SIMEETY
V| 62379 62420 s 1.0077 | 3687 34752 s 2.887 29% s
2 | 6.9 60702 a s aars | 42533 42560 @ 3.858 4,043 a
3| 678 6797 s 44875 | 4910 s0289 5 so8s 4827 s
¢ | 83631 83700 a 53199 | 5.5239 6.5025  a 458 5575 a
5| 90323 .08 s 53199 | 58 5830 s 5.877 s
6 | %6922 970  a 64265 | 6.582 6.641  a 6.33 s
7| tems 0.3 s 6.4265 | 6.591 6723 s 6.9% a
8 | 100007 10.9%  a 75984 | 6.620 6.767 s 7208
9 | NS e s 75084 | 7,083 7723 a 7938 s
0] Jzow 1207 s 83238 | 7.365 7739 s 5166 s
nof oz 12229 e 8.53%69 | 7.488 773  a 6355 a
2 | e z.es s 8.5369
1] 270 2. a
7 IR ER PR EW'E a
4 |

Tables V and VI give TM frequencies of eccentric an-
nular guides. In Table V, the inner radius is held fixed at
r=0.5, and the offset of the centers d is varied over the
values 0, 0.1, 0.2, and 0.3. A concentric annulus (d = 0) can
be solved exactly. Its TM frequencies k are roots of the

equations
T (k)Y (kr)—=J,(kr)Y,(k) =0 (17)

where J,, Y, are Bessel functions of the first and second
kind, and n=0,1,2, - - - . A convenient seven-place table of
roots for n = 0(1)10 and r = 0(0.05)0.95 is [17]. Notice that
roots associated with n =0 are single roots, but roots for
n >1 are double since one associated mode has an angular
component of cosrf, while the other has sinnf#. From
Table V, observe that these double frequencies bifurcate or
split into distinct frequencies as the inner circle becomes
eccentric. The fundamental frequency decreases rather
rapidly with increasing eccentricity. Other frequencies de-
crease less rapidly, while some actually increase for small
eccentricities and then decrease. If graphs were drawn of
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the frequencies versus eccentricity, some of the curves
would appear to cross as indicated by exchanges in relative
positions of symmetric and antisymmetric frequencies. Ap-
proximations from [13] using truncated series of Bessel
functions are also given in Table V, which are in good
agreement with the bounds.

Table VI gives bounds for r =2/3,d = 0.2, and r = 0.25,
d =0.5"and 0.25, as well as the exact frequencies for the
concentric annulus with » = 0.25. Notice that the region
with.r =0.25, d =0.25 contains the region with r = 0.5,
d = 0.2, which in turn contains the region with r=2/3,
d=0.2. It is well known that the TM frequencies are
monotone with respect’ to domain inclusion, and this phe-
nomenon can be observed here.

Graphs are shown of TM frequencies as a function of
eccentricity in [8], [9]}, and [13]. Point matching is used in
[8] to give the first five frequencies for » = 0.25 and r = 0.5;
in [9], a perturbation method gives the first frequency for
r = 0.25; and in [13], the first five to seven frequencies are
given for r = 0.1, 0.3, and 0.5. These graphs are interesting
qualitatively as. showing the variation of the frequencies
with the offset, but quantitatively are difficult to read with
accuracy beyond about 5 percent. Within 5 percent, these
graphical results agree with the bounds of the tables, but
note that the relative error between the tabulated upper
and lower bounds for the lower frequencies is generally
<1 percent.

The graphical results of our Fig. 4 should be compared
with [8, figs. 5-8], and those of our Fig. 5 should be
compared with [8, figs. 9 and 10], [9, fig. 4], and [13, fig. 2].

The results obtained in [14] by truncation of Bessel
function series do not compare well with the bounds. The
approximations reported there are sometimes too low,
sometimes too high, and some of the higher frequencies
reported are very high (e.g., [14] gives for r=2/3,d = 0.2,
k;=11.8719, whereas k,<10.3553; for r=10.5, d=02,
ky=12.3224, whereas ky < 9.3488; for r=0.5, d=10.3, k,
= 9.9978, whereas k, <8.316; for r=0.25, d =0.5, k5=
7.4380, whereas k5 < 5.877). Furthermore, [14] incorrectly
reports thé values of k, and k, given in [13] for r =0.5,
d=02.

Tables VII, VIIL, and IX report bounds for TE frequen-
cies of various eccentric annuli, as well as exact values for
the circle and some concentric annuli. Concentric annuli
have frequencies k which are roots of the equations

C LK) Y (k)= (kr) Y, (K) =0 (18)

where the prime denotes derivative, and n=0,1,2,---
These are also tabulated in [17] for n=0(1)10 and r =
0(0.05)0.95. Tt is very important to observe that the first
nonzero root for n=0 is not the lowest frequency. The
lowest nonzero frequency is the double first root for n =1
and the single first root for n = 0 gives a higher frequency.
Again, all roots for n >1 are double and bifurcate as the
inner circle becomes eccentric.

Tables VII and VIII also given the approximations of
[8], where a graph is also given of the lowest four TE
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TABLE VII
FIrsT 20 NONZERO TE FREQUENCIES k FOR ECCENTRIC ANNULAR
GUIDE. EXACT FROM [17], BOUNDS FROM (60, 60)-TRUNCATION
AND 64-RITZ. APPROXIMATIONS FROM [8].

re2/3,d=02? e V2,d=02

Lower  Upper

L Upper
ound oo (el Bound Bound

3 Bound  Boun: Symmetry Exact

Svmetry

1.35114 1,35219
1,40694 1,40793
2,6815  -2,6840
2 6837 2,6862
3.9247  3,9298
3.9247  3.9298
4,9937  5.0092
9 47804 4 7901 5.,1036  5.1138
10 59218 5 918 5.1031  5,1139

4 1.3547
5
a
s
a
s
a
5
s
u 5.9231 & 9385 ~ 2 5.793 5,834
<
<
a
a
s
s
2
s
a
s

1.3547
2 6812
2 6812
3.9578
3,9578
5.1752
51752
6.3389
6,389
6.3932
6 5649
6 5649
7,0626
7.0626
7 4622
7.4622
7 8401
7.8401
€.,5586

2 | 180010 11476 ) qap
3| 027 13221 b3
4| 2,667 24505

5 | 2,408 2.4440

6 | 3.6142 3.€20

70 36187 3620

8

4,7804  4,70%9

2 £.3321 6 3499 6 234 & 261
13 7,027 7 068 6 240 6.262
14 7035 7 067 6 542 6.599
15 7. 7.139 7.236 7
16 7.867 7.9 7.302 7.385
17 8,075 8 184 7 334 7392
18 8.093 8,142 7.881 7.994
19 9,060 9 296
20 9,089 9 2%
21 9.251 9 412

8 304 8,500
8 333 8.493
8.483 8.626

D

TABLE VIII
TE FREQUENCIES k FOR ECCENTRIC ANNULAR GUIDES. EXACT
FROM [17], BOUNDS FROM (60, 60)-TRUNCATION AND 64-RITZ.
APPROXIMATIONS FROM [8].

ro=0,475, d = 2.315 r = 0.15875, ¢ = 0.379 r=0

3 Lower <Upjur (4 Lower  Upper  rg3

Bound  Bo.nd symetry | pottt Bound symmetry | Exact

1.8412
1.8412
3.0542
3.0542
3.8317
4 2012
4,2012

1.7330 1.7584 ! 7581
1.7603 1,798 1 7946
2.873 2 989
2.8 3.004
3432 3,775
3 9069 3 9247 3,78 a7

1.3715 1 3741 1 3739 a
s
a
s
s
a

4.362 4407 s 3.76 421
s
a
a
s
a
s

2

3 1.5132 1,515 1 5154
4 2N 2.9

5 27270 2.7345

6 38978 3,9248

7

8

9 4.977 5 084
10 5041 5083
1" 5325 5427
12 5919 6206
13 6.108 6.223
14 ' 6148 6 387

TABLE IX
TE FREQUENCIES k&, FOR ECCENTRIC ANNULAR GUIDES. EXACT
FROM [17], BOUNDS BY (60, 60)-TRUNCATION AND 64-RITZ.

r=0.25,

r=1/3,d=2/8 r=0.25, d =025 IS

Lower  Upper Lower  Upper
Symetey | o Gonma Symmetry exact

Bound  Bound

1.6446 1,6490
1,6768 1.6811
2,9445 2,9684
2,9547 2,9682
3,939 3.988
4120 4,160
4,2146  4,2356 4105 4,168

a 1.6445
s
a
s
s
a
s
9 5,131 5,167 a 4,978 5 060
s
a
s
s
a
a
s

1.6485
3.0093
3.0093
4.193%
4193
4,487

1.5393 1.5436 a
s
s
a
s
a
s
a 5 0045
s
a
s
s
a
a
s

3

2

3 1.5766 1.5807
4 2,8966 2,9067
5 2.8968 2 9067
6 4,0944 4,116
7 4 0955 4,161
8

5 0045
5 3164
5 3164
6 3572

10 5,219 5.270 5 111 5,303
n 5.237  5.27% 5175 5302
12 5.898 5,954
13 6,243 6,39
14 6,288 6 392

5.602 5 780
589 6.43
6,08 6.43
6,31 6,57
6.27 6.76

6 3572
6 4154
6 4154

15 6,578 6 664
16 6.938 7.0M

frequencies for r = 0.5 as a function of eccentricity (again
agreeing, to the limited accuracy of the graph, with the
bounds). The numerical results of [8] are consistently near
the upper bounds, and perhaps could be shown to always
furnish upper bounds tJ the exact frequencies.

The bounds in Table IX for r=1/3, d=2/9 were
intended for compatison with results in [11], where ec-
centric annuli of these relative dimensions were considered
using conformal mapping with point matching. Unfor-
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tunately, absolute dimensions are not clearly indicated in
[11], and no reasonable normalization of the frequencies
reported there makes them correspond to those of the
table. Apparently, it was assumed in [11] that the mode
without angular dependence furnishes the lowest nonzero
frequency, which, as observed above, is not so. The paper
[9] may have made this same error ([11] is cited there as a
reference). The graph given in [9] for the lowest TE mode
for r = 0.25 versus eccentricity does not make sense, even
for the concentric annulus.

Note that the aniulus with (r,d)=(2/3,0.2) is con-
tained 1nvboth (0.5,0.2) and (0.475,0.315), which are both
contained in (1/3;,2/9), which is contained in both
(0.25,0.25) and (0.15875,0.379), which are contained in the
full circle (r = 0). It is interesting to examine the behavior
of the frequencies with respect to inclusion. The lower
frequenmes generally decrease as the inner circle increases,
but some of the higher frequencies (e.g., kg, ky;) actually
increase at times. Notice that the double frequencies of the
full circle stay close to one another, in general. The single
frequency corresponding to the n = 0 Bessel function tends
to migrate up the spectrum with increasing inner-circle
size. It is easy to identify because it is associated with a
symmetric mode. For r =0, itis k¢; forr=1/3,d=2/9, it
is kg; when r =2/3, d = 0.2, it has become k1.
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